3.5.3 \(\int \frac {\tan ^3(x)}{(a+b \tan ^4(x))^{5/2}} \, dx\) [403]

3.5.3.1 Optimal result
3.5.3.2 Mathematica [A] (verified)
3.5.3.3 Rubi [A] (verified)
3.5.3.4 Maple [B] (verified)
3.5.3.5 Fricas [B] (verification not implemented)
3.5.3.6 Sympy [F]
3.5.3.7 Maxima [F]
3.5.3.8 Giac [B] (verification not implemented)
3.5.3.9 Mupad [F(-1)]

3.5.3.1 Optimal result

Integrand size = 17, antiderivative size = 109 \[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\frac {\text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )}{2 (a+b)^{5/2}}-\frac {1-\tan ^2(x)}{6 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}-\frac {3 a+(-2 a+b) \tan ^2(x)}{6 a (a+b)^2 \sqrt {a+b \tan ^4(x)}} \]

output
1/2*arctanh((a-b*tan(x)^2)/(a+b)^(1/2)/(a+b*tan(x)^4)^(1/2))/(a+b)^(5/2)+1 
/6*(-3*a-(-2*a+b)*tan(x)^2)/a/(a+b)^2/(a+b*tan(x)^4)^(1/2)+1/6*(-1+tan(x)^ 
2)/(a+b)/(a+b*tan(x)^4)^(3/2)
 
3.5.3.2 Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.95 \[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\frac {1}{6} \left (\frac {3 \text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )}{(a+b)^{5/2}}+\frac {-a (4 a+b)+3 a^2 \tan ^2(x)-3 a b \tan ^4(x)+(2 a-b) b \tan ^6(x)}{a (a+b)^2 \left (a+b \tan ^4(x)\right )^{3/2}}\right ) \]

input
Integrate[Tan[x]^3/(a + b*Tan[x]^4)^(5/2),x]
 
output
((3*ArcTanh[(a - b*Tan[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tan[x]^4])])/(a + b)^ 
(5/2) + (-(a*(4*a + b)) + 3*a^2*Tan[x]^2 - 3*a*b*Tan[x]^4 + (2*a - b)*b*Ta 
n[x]^6)/(a*(a + b)^2*(a + b*Tan[x]^4)^(3/2)))/6
 
3.5.3.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.11, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {3042, 4153, 1579, 593, 25, 686, 27, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (x)^3}{\left (a+b \tan (x)^4\right )^{5/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \int \frac {\tan ^3(x)}{\left (\tan ^2(x)+1\right ) \left (a+b \tan ^4(x)\right )^{5/2}}d\tan (x)\)

\(\Big \downarrow \) 1579

\(\displaystyle \frac {1}{2} \int \frac {\tan ^2(x)}{\left (\tan ^2(x)+1\right ) \left (b \tan ^4(x)+a\right )^{5/2}}d\tan ^2(x)\)

\(\Big \downarrow \) 593

\(\displaystyle \frac {1}{2} \left (\frac {\int -\frac {1-2 \tan ^2(x)}{\left (\tan ^2(x)+1\right ) \left (b \tan ^4(x)+a\right )^{3/2}}d\tan ^2(x)}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {1-2 \tan ^2(x)}{\left (\tan ^2(x)+1\right ) \left (b \tan ^4(x)+a\right )^{3/2}}d\tan ^2(x)}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {3 a-(2 a-b) \tan ^2(x)}{a (a+b) \sqrt {a+b \tan ^4(x)}}-\frac {\int -\frac {3 a b}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)}{a b (a+b)}}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {3 \int \frac {1}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)}{a+b}+\frac {3 a-(2 a-b) \tan ^2(x)}{a (a+b) \sqrt {a+b \tan ^4(x)}}}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {3 a-(2 a-b) \tan ^2(x)}{a (a+b) \sqrt {a+b \tan ^4(x)}}-\frac {3 \int \frac {1}{-\tan ^4(x)+a+b}d\frac {a-b \tan ^2(x)}{\sqrt {b \tan ^4(x)+a}}}{a+b}}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {3 a-(2 a-b) \tan ^2(x)}{a (a+b) \sqrt {a+b \tan ^4(x)}}-\frac {3 \text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )}{(a+b)^{3/2}}}{3 (a+b)}-\frac {1-\tan ^2(x)}{3 (a+b) \left (a+b \tan ^4(x)\right )^{3/2}}\right )\)

input
Int[Tan[x]^3/(a + b*Tan[x]^4)^(5/2),x]
 
output
(-1/3*(1 - Tan[x]^2)/((a + b)*(a + b*Tan[x]^4)^(3/2)) - ((-3*ArcTanh[(a - 
b*Tan[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tan[x]^4])])/(a + b)^(3/2) + (3*a - (2 
*a - b)*Tan[x]^2)/(a*(a + b)*Sqrt[a + b*Tan[x]^4]))/(3*(a + b)))/2
 

3.5.3.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 593
Int[(x_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[(c + d*x)^(n + 1)*(c - d*x)*((a + b*x^2)^(p + 1)/(2*(p + 1)*(b*c^2 + 
a*d^2))), x] - Simp[d/(2*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a + b* 
x^2)^(p + 1)*(c*n - d*(n + 2*p + 4)*x), x], x] /; FreeQ[{a, b, c, d, n}, x] 
 && LtQ[p, -1] && NeQ[b*c^2 + a*d^2, 0]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1579
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], 
 x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.5.3.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(637\) vs. \(2(92)=184\).

Time = 1.33 (sec) , antiderivative size = 638, normalized size of antiderivative = 5.85

method result size
derivativedivides \(\frac {\sqrt {a +b \tan \left (x \right )^{4}}\, \tan \left (x \right )^{2} \left (2 b \tan \left (x \right )^{4}+3 a \right )}{6 a^{2} \left (b^{2} \tan \left (x \right )^{8}+2 a b \tan \left (x \right )^{4}+a^{2}\right )}+\frac {b^{2} \ln \left (\frac {2 a +2 b -2 b \left (1+\tan \left (x \right )^{2}\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tan \left (x \right )^{2}\right )^{2}-2 b \left (1+\tan \left (x \right )^{2}\right )+a +b}}{1+\tan \left (x \right )^{2}}\right )}{2 \left (\sqrt {-a b}+b \right )^{2} \left (\sqrt {-a b}-b \right )^{2} \sqrt {a +b}}+\frac {-\frac {\sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}+b \right ) a}-\frac {\frac {\sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}-b \right ) a}-\frac {\left (2 \sqrt {-a b}+b \right ) \sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}+b \right )^{2} a^{2} \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}+\frac {\left (2 \sqrt {-a b}-b \right ) \sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}-b \right )^{2} a^{2} \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}\) \(638\)
default \(\frac {\sqrt {a +b \tan \left (x \right )^{4}}\, \tan \left (x \right )^{2} \left (2 b \tan \left (x \right )^{4}+3 a \right )}{6 a^{2} \left (b^{2} \tan \left (x \right )^{8}+2 a b \tan \left (x \right )^{4}+a^{2}\right )}+\frac {b^{2} \ln \left (\frac {2 a +2 b -2 b \left (1+\tan \left (x \right )^{2}\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tan \left (x \right )^{2}\right )^{2}-2 b \left (1+\tan \left (x \right )^{2}\right )+a +b}}{1+\tan \left (x \right )^{2}}\right )}{2 \left (\sqrt {-a b}+b \right )^{2} \left (\sqrt {-a b}-b \right )^{2} \sqrt {a +b}}+\frac {-\frac {\sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}+b \right ) a}-\frac {\frac {\sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{3 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}}-\frac {\sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{3 a \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}-b \right ) a}-\frac {\left (2 \sqrt {-a b}+b \right ) \sqrt {b \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )^{2}+2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}+b \right )^{2} a^{2} \left (\tan \left (x \right )^{2}-\frac {\sqrt {-a b}}{b}\right )}+\frac {\left (2 \sqrt {-a b}-b \right ) \sqrt {b \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )^{2}-2 \sqrt {-a b}\, \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}}{8 \left (\sqrt {-a b}-b \right )^{2} a^{2} \left (\tan \left (x \right )^{2}+\frac {\sqrt {-a b}}{b}\right )}\) \(638\)

input
int(tan(x)^3/(a+b*tan(x)^4)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/6*(a+b*tan(x)^4)^(1/2)*tan(x)^2*(2*b*tan(x)^4+3*a)/a^2/(b^2*tan(x)^8+2*a 
*b*tan(x)^4+a^2)+1/2*b^2/((-a*b)^(1/2)+b)^2/((-a*b)^(1/2)-b)^2/(a+b)^(1/2) 
*ln((2*a+2*b-2*b*(1+tan(x)^2)+2*(a+b)^(1/2)*(b*(1+tan(x)^2)^2-2*b*(1+tan(x 
)^2)+a+b)^(1/2))/(1+tan(x)^2))+1/8/((-a*b)^(1/2)+b)/a*(-1/3/(-a*b)^(1/2)/( 
tan(x)^2-(-a*b)^(1/2)/b)^2*(b*(tan(x)^2-(-a*b)^(1/2)/b)^2+2*(-a*b)^(1/2)*( 
tan(x)^2-(-a*b)^(1/2)/b))^(1/2)-1/3/a/(tan(x)^2-(-a*b)^(1/2)/b)*(b*(tan(x) 
^2-(-a*b)^(1/2)/b)^2+2*(-a*b)^(1/2)*(tan(x)^2-(-a*b)^(1/2)/b))^(1/2))-1/8/ 
((-a*b)^(1/2)-b)/a*(1/3/(-a*b)^(1/2)/(tan(x)^2+(-a*b)^(1/2)/b)^2*(b*(tan(x 
)^2+(-a*b)^(1/2)/b)^2-2*(-a*b)^(1/2)*(tan(x)^2+(-a*b)^(1/2)/b))^(1/2)-1/3/ 
a/(tan(x)^2+(-a*b)^(1/2)/b)*(b*(tan(x)^2+(-a*b)^(1/2)/b)^2-2*(-a*b)^(1/2)* 
(tan(x)^2+(-a*b)^(1/2)/b))^(1/2))-1/8*(2*(-a*b)^(1/2)+b)/((-a*b)^(1/2)+b)^ 
2/a^2/(tan(x)^2-(-a*b)^(1/2)/b)*(b*(tan(x)^2-(-a*b)^(1/2)/b)^2+2*(-a*b)^(1 
/2)*(tan(x)^2-(-a*b)^(1/2)/b))^(1/2)+1/8*(2*(-a*b)^(1/2)-b)/((-a*b)^(1/2)- 
b)^2/a^2/(tan(x)^2+(-a*b)^(1/2)/b)*(b*(tan(x)^2+(-a*b)^(1/2)/b)^2-2*(-a*b) 
^(1/2)*(tan(x)^2+(-a*b)^(1/2)/b))^(1/2)
 
3.5.3.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 268 vs. \(2 (95) = 190\).

Time = 0.45 (sec) , antiderivative size = 556, normalized size of antiderivative = 5.10 \[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\left [\frac {3 \, {\left (a b^{2} \tan \left (x\right )^{8} + 2 \, a^{2} b \tan \left (x\right )^{4} + a^{3}\right )} \sqrt {a + b} \log \left (\frac {{\left (a b + 2 \, b^{2}\right )} \tan \left (x\right )^{4} - 2 \, a b \tan \left (x\right )^{2} - 2 \, \sqrt {b \tan \left (x\right )^{4} + a} {\left (b \tan \left (x\right )^{2} - a\right )} \sqrt {a + b} + 2 \, a^{2} + a b}{\tan \left (x\right )^{4} + 2 \, \tan \left (x\right )^{2} + 1}\right ) + 2 \, {\left ({\left (2 \, a^{2} b + a b^{2} - b^{3}\right )} \tan \left (x\right )^{6} - 3 \, {\left (a^{2} b + a b^{2}\right )} \tan \left (x\right )^{4} - 4 \, a^{3} - 5 \, a^{2} b - a b^{2} + 3 \, {\left (a^{3} + a^{2} b\right )} \tan \left (x\right )^{2}\right )} \sqrt {b \tan \left (x\right )^{4} + a}}{12 \, {\left ({\left (a^{4} b^{2} + 3 \, a^{3} b^{3} + 3 \, a^{2} b^{4} + a b^{5}\right )} \tan \left (x\right )^{8} + a^{6} + 3 \, a^{5} b + 3 \, a^{4} b^{2} + a^{3} b^{3} + 2 \, {\left (a^{5} b + 3 \, a^{4} b^{2} + 3 \, a^{3} b^{3} + a^{2} b^{4}\right )} \tan \left (x\right )^{4}\right )}}, \frac {3 \, {\left (a b^{2} \tan \left (x\right )^{8} + 2 \, a^{2} b \tan \left (x\right )^{4} + a^{3}\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {b \tan \left (x\right )^{4} + a} {\left (b \tan \left (x\right )^{2} - a\right )} \sqrt {-a - b}}{{\left (a b + b^{2}\right )} \tan \left (x\right )^{4} + a^{2} + a b}\right ) + {\left ({\left (2 \, a^{2} b + a b^{2} - b^{3}\right )} \tan \left (x\right )^{6} - 3 \, {\left (a^{2} b + a b^{2}\right )} \tan \left (x\right )^{4} - 4 \, a^{3} - 5 \, a^{2} b - a b^{2} + 3 \, {\left (a^{3} + a^{2} b\right )} \tan \left (x\right )^{2}\right )} \sqrt {b \tan \left (x\right )^{4} + a}}{6 \, {\left ({\left (a^{4} b^{2} + 3 \, a^{3} b^{3} + 3 \, a^{2} b^{4} + a b^{5}\right )} \tan \left (x\right )^{8} + a^{6} + 3 \, a^{5} b + 3 \, a^{4} b^{2} + a^{3} b^{3} + 2 \, {\left (a^{5} b + 3 \, a^{4} b^{2} + 3 \, a^{3} b^{3} + a^{2} b^{4}\right )} \tan \left (x\right )^{4}\right )}}\right ] \]

input
integrate(tan(x)^3/(a+b*tan(x)^4)^(5/2),x, algorithm="fricas")
 
output
[1/12*(3*(a*b^2*tan(x)^8 + 2*a^2*b*tan(x)^4 + a^3)*sqrt(a + b)*log(((a*b + 
 2*b^2)*tan(x)^4 - 2*a*b*tan(x)^2 - 2*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 - a 
)*sqrt(a + b) + 2*a^2 + a*b)/(tan(x)^4 + 2*tan(x)^2 + 1)) + 2*((2*a^2*b + 
a*b^2 - b^3)*tan(x)^6 - 3*(a^2*b + a*b^2)*tan(x)^4 - 4*a^3 - 5*a^2*b - a*b 
^2 + 3*(a^3 + a^2*b)*tan(x)^2)*sqrt(b*tan(x)^4 + a))/((a^4*b^2 + 3*a^3*b^3 
 + 3*a^2*b^4 + a*b^5)*tan(x)^8 + a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3 + 2*( 
a^5*b + 3*a^4*b^2 + 3*a^3*b^3 + a^2*b^4)*tan(x)^4), 1/6*(3*(a*b^2*tan(x)^8 
 + 2*a^2*b*tan(x)^4 + a^3)*sqrt(-a - b)*arctan(sqrt(b*tan(x)^4 + a)*(b*tan 
(x)^2 - a)*sqrt(-a - b)/((a*b + b^2)*tan(x)^4 + a^2 + a*b)) + ((2*a^2*b + 
a*b^2 - b^3)*tan(x)^6 - 3*(a^2*b + a*b^2)*tan(x)^4 - 4*a^3 - 5*a^2*b - a*b 
^2 + 3*(a^3 + a^2*b)*tan(x)^2)*sqrt(b*tan(x)^4 + a))/((a^4*b^2 + 3*a^3*b^3 
 + 3*a^2*b^4 + a*b^5)*tan(x)^8 + a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3 + 2*( 
a^5*b + 3*a^4*b^2 + 3*a^3*b^3 + a^2*b^4)*tan(x)^4)]
 
3.5.3.6 Sympy [F]

\[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\int \frac {\tan ^{3}{\left (x \right )}}{\left (a + b \tan ^{4}{\left (x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(tan(x)**3/(a+b*tan(x)**4)**(5/2),x)
 
output
Integral(tan(x)**3/(a + b*tan(x)**4)**(5/2), x)
 
3.5.3.7 Maxima [F]

\[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\int { \frac {\tan \left (x\right )^{3}}{{\left (b \tan \left (x\right )^{4} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(tan(x)^3/(a+b*tan(x)^4)^(5/2),x, algorithm="maxima")
 
output
integrate(tan(x)^3/(b*tan(x)^4 + a)^(5/2), x)
 
3.5.3.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 597 vs. \(2 (95) = 190\).

Time = 0.30 (sec) , antiderivative size = 597, normalized size of antiderivative = 5.48 \[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\frac {{\left ({\left (\frac {{\left (2 \, a^{7} b^{2} + 11 \, a^{6} b^{3} + 24 \, a^{5} b^{4} + 25 \, a^{4} b^{5} + 10 \, a^{3} b^{6} - 3 \, a^{2} b^{7} - 4 \, a b^{8} - b^{9}\right )} \tan \left (x\right )^{2}}{a^{9} b + 8 \, a^{8} b^{2} + 28 \, a^{7} b^{3} + 56 \, a^{6} b^{4} + 70 \, a^{5} b^{5} + 56 \, a^{4} b^{6} + 28 \, a^{3} b^{7} + 8 \, a^{2} b^{8} + a b^{9}} - \frac {3 \, {\left (a^{7} b^{2} + 6 \, a^{6} b^{3} + 15 \, a^{5} b^{4} + 20 \, a^{4} b^{5} + 15 \, a^{3} b^{6} + 6 \, a^{2} b^{7} + a b^{8}\right )}}{a^{9} b + 8 \, a^{8} b^{2} + 28 \, a^{7} b^{3} + 56 \, a^{6} b^{4} + 70 \, a^{5} b^{5} + 56 \, a^{4} b^{6} + 28 \, a^{3} b^{7} + 8 \, a^{2} b^{8} + a b^{9}}\right )} \tan \left (x\right )^{2} + \frac {3 \, {\left (a^{8} b + 6 \, a^{7} b^{2} + 15 \, a^{6} b^{3} + 20 \, a^{5} b^{4} + 15 \, a^{4} b^{5} + 6 \, a^{3} b^{6} + a^{2} b^{7}\right )}}{a^{9} b + 8 \, a^{8} b^{2} + 28 \, a^{7} b^{3} + 56 \, a^{6} b^{4} + 70 \, a^{5} b^{5} + 56 \, a^{4} b^{6} + 28 \, a^{3} b^{7} + 8 \, a^{2} b^{8} + a b^{9}}\right )} \tan \left (x\right )^{2} - \frac {4 \, a^{8} b + 25 \, a^{7} b^{2} + 66 \, a^{6} b^{3} + 95 \, a^{5} b^{4} + 80 \, a^{4} b^{5} + 39 \, a^{3} b^{6} + 10 \, a^{2} b^{7} + a b^{8}}{a^{9} b + 8 \, a^{8} b^{2} + 28 \, a^{7} b^{3} + 56 \, a^{6} b^{4} + 70 \, a^{5} b^{5} + 56 \, a^{4} b^{6} + 28 \, a^{3} b^{7} + 8 \, a^{2} b^{8} + a b^{9}}}{6 \, {\left (b \tan \left (x\right )^{4} + a\right )}^{\frac {3}{2}}} + \frac {\arctan \left (\frac {\sqrt {b} \tan \left (x\right )^{2} - \sqrt {b \tan \left (x\right )^{4} + a} + \sqrt {b}}{\sqrt {-a - b}}\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-a - b}} \]

input
integrate(tan(x)^3/(a+b*tan(x)^4)^(5/2),x, algorithm="giac")
 
output
1/6*((((2*a^7*b^2 + 11*a^6*b^3 + 24*a^5*b^4 + 25*a^4*b^5 + 10*a^3*b^6 - 3* 
a^2*b^7 - 4*a*b^8 - b^9)*tan(x)^2/(a^9*b + 8*a^8*b^2 + 28*a^7*b^3 + 56*a^6 
*b^4 + 70*a^5*b^5 + 56*a^4*b^6 + 28*a^3*b^7 + 8*a^2*b^8 + a*b^9) - 3*(a^7* 
b^2 + 6*a^6*b^3 + 15*a^5*b^4 + 20*a^4*b^5 + 15*a^3*b^6 + 6*a^2*b^7 + a*b^8 
)/(a^9*b + 8*a^8*b^2 + 28*a^7*b^3 + 56*a^6*b^4 + 70*a^5*b^5 + 56*a^4*b^6 + 
 28*a^3*b^7 + 8*a^2*b^8 + a*b^9))*tan(x)^2 + 3*(a^8*b + 6*a^7*b^2 + 15*a^6 
*b^3 + 20*a^5*b^4 + 15*a^4*b^5 + 6*a^3*b^6 + a^2*b^7)/(a^9*b + 8*a^8*b^2 + 
 28*a^7*b^3 + 56*a^6*b^4 + 70*a^5*b^5 + 56*a^4*b^6 + 28*a^3*b^7 + 8*a^2*b^ 
8 + a*b^9))*tan(x)^2 - (4*a^8*b + 25*a^7*b^2 + 66*a^6*b^3 + 95*a^5*b^4 + 8 
0*a^4*b^5 + 39*a^3*b^6 + 10*a^2*b^7 + a*b^8)/(a^9*b + 8*a^8*b^2 + 28*a^7*b 
^3 + 56*a^6*b^4 + 70*a^5*b^5 + 56*a^4*b^6 + 28*a^3*b^7 + 8*a^2*b^8 + a*b^9 
))/(b*tan(x)^4 + a)^(3/2) + arctan((sqrt(b)*tan(x)^2 - sqrt(b*tan(x)^4 + a 
) + sqrt(b))/sqrt(-a - b))/((a^2 + 2*a*b + b^2)*sqrt(-a - b))
 
3.5.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^3(x)}{\left (a+b \tan ^4(x)\right )^{5/2}} \, dx=\int \frac {{\mathrm {tan}\left (x\right )}^3}{{\left (b\,{\mathrm {tan}\left (x\right )}^4+a\right )}^{5/2}} \,d x \]

input
int(tan(x)^3/(a + b*tan(x)^4)^(5/2),x)
 
output
int(tan(x)^3/(a + b*tan(x)^4)^(5/2), x)